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Abstract

The effective design of instruments that rely on the interaction of radia-
tion with matter for their operation is a complex task. A full optimization
of the many parameters involved may still be sought by leveraging recent
progress in computer science. Key to such a goal is the definition of a utility
function that models the true goals of the instrument. Such a function must
account for the interplay between physical processes that are intrinsically
stochastic in nature and the vast space of possible choices for the physical
characteristics of the instrument. The construction of a differentiable model
of all the ingredients of the information-extraction procedures, including
data collection, detector response, pattern recognition, and all existing con-
straints, then allows the automatic exploration of the vast space of design
choices and the search for their best combination.

In this document we succinctly describe the research program of the
MODE Collaboration (an acronym for Machine-learning Optimized Design
of Experiments), which aims at developing tools based on deep learning
techniques to achieve end-to-end optimization of the design of instruments
via a fully differentiable pipeline capable of exploring the Pareto-optimal
frontier of the utility function. The goal of MODE is to demonstrate those
techniques on small-scale applications such as muon tomography or hadron
therapy, to then gradually adapt them to the more ambitious task of explor-
ing innovative solutions to the design of detectors for future particle collider
experiments.
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1 Introduction

The design of instruments that rely on the interaction of radiation with matter
for their operation is a quite complex task if our goal is to achieve near-optimality
on some well-defined utility function U , such as the expected precision of a set of
planned measurements achievable with a given amount of collected data. This com-
plexity stems from the interplay between physical processes that are intrinsically
stochastic in nature—the quantum phenomena that take place at the subnuclear
level—and the vast space of possible choices for the physical characteristics of the
instrument and its detection elements, as defined in its design space. The precision
of pattern recognition of detected signals and the power of information-extraction
procedures that directly affect the value of U both depend on these characteris-
tics. In the majority of realistic cases, U may be represented as a combination
of performance and cost considerations that should be balanced within reasonable
limitations.

Neural networks are naturally suitable for the task mentioned above [1] They can
also be effectively used as surrogates for simulators, to enable gradient-based op-
timization in cases where a simulator is non-differentiable. In addition, automatic
differentiation (AD) techniques developed in the 1980s [2] and now commonly
available in the most popular machine learning (ML) frameworks [3, 4] make it
possible to rely on efficient implementations of the back-propagation algorithm.
The MODE Collaboration [5] (an acronym for Machine-learning Optimized De-
sign of Experiments) aims at developing tools based on deep neural networks and
modern AD techniques to implement a full modelling of all the elements of ex-
perimental design, achieving end-to-end optimization of the design of instruments
via a fully differentiable pipeline capable of exploring the Pareto-optimal frontier
of U . Exploratory studies have shown that very large gains in performance are
potentially achievable even for very simple apparata [6, 7]. MODE has the goal of
showing how these techniques may be adapted to the complexity of modern and
future particle detectors and experiments, while remaining adaptable to a number
of applications outside of that domain. Below we succinctly describe the research
program of the MODE Collaboration.

2 The MODE program

2.1 Architecture development

A generic optimization pipeline for a complex system can be constructed by as-
sembling modules that take on different modeling tasks. The modules interact by
receiving input data and processing them to provide an output that satisfies spec-
ified external constraints dependent on the value of the parameters under study;
the output of each module is fed to the next one, until an objective function can be
computed. The computation of each module is differentiable, so that the compo-
sition of such modules is also differentiable through the chain rule of differentiable
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calculus, enabling the gradient of U to be computed and used in the search for
extrema of the objective function [8]; the search may be performed in steps, by
freezing some modules while updating others, to simplify the parameter space scan.

As a specific example we may consider the optimization of the layout of a muon
radiography [9] apparatus for material identification within a volume of interest
(one of the use cases described below). A random generation of cosmic rays, in the
form of incoming particle four-vectors, is fed to a fast simulation of detection ap-
paratus and scanned volume. The simulation of multiple scattering, particle prop-
agation, and resulting electronic signals in the detector may be directly produced
by a differentiable program. Alternatively, the simulation output may inform a
differentiable module based on deep generative models such as variational autoen-
coders (VAE) [10], generative adversarial networks (GAN) [11], or flow models [12],
or through the use of local generative surrogates of the gradients [7]; a genera-
tion/validation loop must be available to keep the model appropriate as the layout
parameters are modified during the optimization task. The output of the particle
detection module is fed to a reconstruction module, which produces incoming and
outgoing track measurements through a fit to the detected signals; these are again
a function of the detector parameters. Downstream, an information-extraction
module accumulates information on the density of material in the container. Its
output may be used to compute a loss function that describes as closely as possible
the real goal of the system. In a simplified setup this function could be defined
as the type-II error rate on the detection of a given amount of a particular mate-
rial within the volume of interest, as modeled by the simulation. A sketch of the
described pipeline is shown in Figure 1.

Figure 1: Conceptual layout of an optimization pipeline for a muon radiography ap-
paratus. Modules within the dashed black box inform the validation of a continuous
model and are not part of the optimization flow.
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2.2 Use cases

Given its considerable complexity, the development of a pipeline for the optimiza-
tion of experiment designs should start with the study of simpler use cases, and
proceed incrementally by adding complexity. Below we succinctly exemplify a set
of use cases that might be considered in series in the development of our research
plan.

2.2.1 The MUonE detector

MUonE is a detector proposed to precisely measure the q2-differential cross section
of elastic muon-electron scattering, to reduce dominant systematic uncertainties in
the g-2 experiment [13]. Given the simplicity of investigated physics process and
baseline detector layout, MUonE was taken as an example for geometry optimiza-
tion studies that did not employ AD techniques [6]. A reanalysis within a full feed-
back loop which considers all geometry parameters together with reconstruction-
driven systematic uncertainties, cost, and a more precise definition of the utility
function is relatively straightforward to produce, and may thus constitute a valid
initial benchmark for comparison of automatic optimization searches and discrete
scans.

2.2.2 Muon Radiography

The abundant natural flux of atmospheric muons and their large penetration power
have been exploited for the imaging of a large variety of objects spanning in size
from O(1 m) to O(1 km), with applications including archaeology, volcanology,
border control, nuclear safety, and industrial process control [9]. In some applica-
tions, the volume of interest can be sandwiched between two trackers and one can
measure the scattering of the muons through the target volume, which is correlated
with the atomic number Z of the material. When the target volume is very large
(e.g., a mountain or an entire building), a single tracker is placed downstream to
measure the absorption of the muon flux through the target, from which a density
map can be derived. By optimizing the layout of the detectors, large gains in
the resolution and material identification potential of a muon tracking system are
achievable. A recent project [14] aims at the development of compact, autonomous,
portable, and modular muon radiography setups based on small-area resistive plate
chambers (RPC), a technology chosen because of its good trade-off between cost,
ease of construction, and position and time resolution. The goal is to allow a high
degree of modularity for the geometry of the complete setup: ideally, the already
mounted individual RPC planes would be produced in large numbers and deployed
in situ in the arrangement that best fits the specific use case while respecting the
local constraints (e.g., the optimal location may be in a narrow tunnel). The same
RPC layers may be arranged to form one or two trackers depending on the relative
importance of absorption and scattering on the final discrimination power; for a
single tracker sometimes it is not obvious a priori whether it is more convenient to
have a few layers with large areas to collect more data, or to maximize the num-
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ber of layers crossed by the muons to improve tracking resolution. An automatic
optimization algorithm would be able to provide a quick redesign of the geometry
for new measurements of different targets.

2.2.3 Proton Therapy

Effective irradiation of non-operable tumors with intense proton or light-hadron
beams could be achieved if rapid imaging techniques are used to create 3D maps
of the target and surrounding tissue. The imaging resolution depends on the
possibility of acquiring sufficient data within seconds, avoiding target movements.
A fast calorimeter has been developed by the iMPACT collaboration [15] for this
effort. The optimization of the layout of the detection elements, and the optimal
addition of a magnetic field to the setup, are important aspects well suitable to an
investigation with AD means. We plan to collaborate with iMPACT to investigate
the space of detector solutions, with the goal of maximizing the benefit of the
imaging tool produced.

2.2.4 A hybrid calorimeter for a future collider

So far, the guiding principle when building high-energy physics detectors has been
strongly governed by the idealized requirements of classic reconstruction algo-
rithms. As a consequence, general-purpose detectors follow the principle of track-
ing charged particle trajectories within a magnetic field in a low-material-budget
tracker, where nuclear interactions and multiple scatterings are kept to a mini-
mum to provide good conditions for the track helix fit; only in a second step both
neutral and charged particles are brought to a stop to measure their energy in
a dense calorimeter. With recent advances in machine-learning-based particle re-
construction from raw detector signals [16], it is possible to break this paradigm
and optimally combine position and energy measurements. We foresee the ex-
ploitation of these advancements with the study of feasibility and design of an
optimized hybrid calorimeter, with material density increasing with distance from
the interaction point. Such a device would ideally allow one to exploit the distinct
nuclear interactions of different particle species with the material together with the
probabilistic information from a detailed tracking of the evolving shower through
the detector. However, this approach would require an optimization of the hybrid
reconstruction before its inclusion into the global optimization pipeline [17]. Cre-
ating a precise, fully differentiable model for the optimization of such a system is
a terrific challenge, with possible enormous gains.

2.3 Computing requirements and infrastructure

The basic pipeline should be generic and customizable for different detector op-
timization problems, and have a well-defined structure of encapsulated functional
blocks. This enables running blocks separately for the initial decomposition of the
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full problem, as well as validation of individual blocks. The pipeline optimiza-
tion loop should use containerization technologies and be executable on common
computing infrastructure. Various blocks use gradient optimization underneath,
thus access to accelerated tensor computing hardware is essential. The infrastruc-
ture should provide an interface for the communication of input/output values for
every block. The optimization target should be flexible to support a variety of
constraint metrics, such as physics performance, detector performance, and cost;
in cases when multiple criteria are specified, a Pareto-optimal selection of possi-
ble configurations should be returned. Besides optimized detector parameters, the
pipeline should produce trained surrogate models and reconstruction algorithms
suitable for interactive analysis of possible trade-offs between alternative options.
The infrastructure should also allow users to substitute any ML-powered block
with a reference baseline implementation of the same functionality. This provides
a direct way for collecting reference data to train the surrogate models ML imple-
mentations, as well as for validating and evaluating the corresponding blocks. The
framework should also support tuning of ML models using a combination of real
and simulated data.

3 Concluding remarks

Recent advances in computer science make it possible to give a truer meaning to
the word “optimization” when discussing the design of instruments that operate
via the interaction of radiation with matter. The MODE collaboration aims at
developing a versatile, modular, and scalable software architecture, which can be
customized to different optimization problems and provide a full exploration of the
space of their design choices and information extraction procedures. We believe
that such a tool may offer enormous potential gains to a wide range of research
and industry applications.
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