ABOUT
MODE (for Machine-learning Optimized Design of Experiments) is a collaboration of physicists and computer scientists who target the use of differentiable programming in design optimization of detectors for particle physics applications, extending from fundamental research at accelerators, in space, and in nuclear physics and neutrino facilities, to industrial applications employing the technology of radiation detection.
We aim to develop modular, customizable, and scalable, fully differentiable pipelines for the end-to-end optimization of articulated objective functions that model in full the true goals of experimental particle physics endeavours, to ensure optimal detector performance, analysis potential, and cost-effectiveness.
The main goal of our activities is to develop an architecture that can be adapted to the above use cases but will also be customizable to any other experimental endeavour employing particle detection at its core. We welcome suggestions, as well as interest in joining our effort, by researchers focusing on use cases for which this technology can be of benefit.
The above program is supported as an
expression of interest by the
JENAA group.
WORKSHOP
The Fourth MODE Workshop on Differentiable Programming for experiment design will take place at IFIC Valencia! Registration and abstract submission are already open in the indico page!. Keynote talks by Danilo Rezende (DeepMind), Andrea Walther (HUBerlin), and Riccardo Zecchina (Bocconi).
COLLABORATION
At INFN and Università of Padova Dr.
Tommaso Dorigo, Dr.
Pablo De Castro Manzano, Dr.
Federica Fanzago, Dr.
Lukas Layer, Dr.
Giles Strong, Dr.
Mia Tosi, and Dr.
Hevjin Yarar
At Université catholique de Louvain Dr.
Andrea Giammanco, Prof.
Christophe Delaere, and Mr.
Maxime Lagrange
At Universidad de Oviedo and ICTEA Dr.
Pietro Vischia
At Université Clermont Auvergne, Prof.
Julien Donini, and Mr.
Federico Nardi (joint with Universitá di Padova)
At the Higher School of Economics of Moscow, Prof.
Andrey Ustyuzhanin, Dr.
Alexey Boldyrev, Dr.
Denis Derkach, and Dr.
Fedor Ratnikov
At the Instituto de Física de Cantabria, Dr.
Pablo Martínez Ruíz del Árbol
At CERN, Dr.
Sofia Vallecorsa
At Karlsruher Institut für Technologie, Dr.
Jan Kieseler
At University of Oxford Dr.
Atilim Gunes Baydin
At New York University Prof.
Kyle Cranmer
At Université de Liège Prof.
Gilles Louppe
At GSI/FAIR Dr.
Anastasios Belias
At HEPHY Vienna (OeAW) Dr.
Claudius Krause
At Uppsala Universitet Prof.
Christian Glaser
At TU-München, Prof.
Lukas Heinrich and Mr.
Max Lamparth
At Durham University Dr.
Patrick Stowell
At Lebanese University Prof.
Haitham Zaraket
At University of Kaiserslautern-Landau Mr.
Max Aehle, Prof.
Nicolas Gauger, Dr.
Lisa Kusch
At University of Applied Sciences Worms Prof.
Ralf Keidel
At Princeton University Prof.
Peter Elmer
At University of Washington Prof.
Gordon Watts
At SLAC Dr.
Ryan Roussel
At Lulea University of Technology Prof.
Fredrik Sandin and Prof.
Marcus Liwicki
At IGFAE and Universidad de Santiago de Compostela Prof.
Xabier Cid Vidal
The Scientific Coordinator of the MODE Collaboration is Dr.
Tommaso Dorigo, INFN-Sezione di Padova
The Steering Board of the MODE Collaboration includes:
- Prof. Julien Donini, UCA
- Dr. Tommaso Dorigo, INFN-PD
- Dr. Andrea Giammanco, UCLouvain
- Dr. Fedor Ratnikov, HSE
- Dr. Pietro Vischia, UniOvi
EVENTS
Below is a list of events organized by the MODE Collaboration:
- Fourth MODE Workshop on Differentiable Programming for Experiment Design (Sept 23-25 2024, Valencia, Spain): the workshop page is here REGISTRATIONS ARE OPEN!.
- TomNeutron hackathon (Mar 14-15, 2024), Santiago de Compostela, Spain.
- TomOpt hackathon (Feb 21-23, 2024), Oviedo, Spain.
- Third MODE Workshop on Differentiable Programming for Experiment Design (July 24-26 2023, Princeton, USA): the workshop page is here.
- TomOpt workshop (Nov 28 - Dec 2, 2022), Louvain-la-Neuve, Belgium.
- Second MODE Workshop on Differentiable Programming for Experiment Design (Sep 12-16 2022, Kolymbari, Crete): the workshop page is here.
- First MODE Workshop on Differentiable Programming (Sep 3-6 2021, Louvain-la-Neuve, Belgium): the workshop page is now available on our website
PUBLICATIONS
Below is a list of publications by the MODE Collaboration:
Below is a concise list of relevant publications to the research interests of the MODE Collaboration. MODE members among the authors are indicated in boldface:
- Max Aehle, Mihály Novák, Vassil Vassilev, Nicolas R. Gauger, Lukas Heinrich, Michael Kagan, David Lange, "Optimization Using Pathwise Algorithmic Derivatives of Electromagnetic Shower Simulations", arXiv:2405.07944
- Tommaso Dorigo, Max Aehle, Julien Donini, Michele Doro, Nicolas R. Gauger, Rafael Izbicki, Ann Lee, Luca Masserano, Federico Nardi, Sidharth S S, Alexander Shen, "End-To-End Optimization of the Layout of a Gamma Ray Observatory", arXiv:2310.01857
- Giles C. Strong, Maxime Lagrange, Aitor Orio, Anna Bordignon, Florian Bury, Tommaso Dorigo, Andrea Giammanco, Mariam Heikal, Jan Kieseler, Max Lamparth, Pablo Martínez Ruíz del Árbol, Federico Nardi, Pietro Vischia, Haitham Zaraket, "TomOpt: Differential optimisation for task- and constraint-aware design of particle detectors in the context of muon tomography", arXiv:2309.14027 (accepted by "Machine Learning: Science and Technology")
- Michael Kagan, L. Heinrich, "Branches of a Tree: Taking Derivatives of Programs with Discrete and Branching Randomness in High Energy Physics", arXiv:2308.16680
- N. Simpson, L. Heinrich, "neos: End-to-End-Optimised Summary Statistics for High Energy Physics", arXiv:2203.05570
- T. Dorigo, S. Guglielmini, J. Kieseler, L. Layer, G.C. Strong, "Deep Regression of Muon Energy with a K-Nearest Neighbor Algorithm", arXiv:2203.02841.
- L. Heinrich, M. Kagan, "Differentiable Matrix Elements with MadJax", arXiv:2203.00057
- J. Kieseler, G.C. Strong, F. Chiandotto, T. Dorigo, L. Layer, "Calorimetric Measurement of Multi-TeV Muons via Deep Regression" Eur. Phys. J. C (2022) 82: 79, doi:10.1140/epjc/s10052-022-09993-5
- C. Neubüser, Jan Kieseler, Paul Lujan, "Optimising longitudinal and lateral calorimeter granularity for software compensation in hadronic showers using deep neural networks" Eur. Phys. J. C (2022) 82: 92 (2022) doi:10.1140/epjc/s10052-022-10031-7
- A. Gunes Baydin, B.A. Pearlmutter, A.A. Radul, and J.M. Siskind, "Automatic Differentiation in Machine Learning: a Survey", Journal of Machine Learning Research (JMLR) 18 (153) (2018) 1, http://jmlr.org/papers/v18/17-468.html
- T. Dorigo, "Geometry Optimization of a Muon-Electron Scattering Detector," Physics Open 4 (2020) 100022, arXiv:200200973[physics.ins-det], doi:10.1016/j.physo.2020.100022.
- T. Dorigo, J. Kieseler, L. Layer and G. Strong, "Muon Energy Measurement from Radiative Losses in a Calorimeter for a Collider Detector", arXiv:2008.10958 [physics.ins-det] (2020).
- S. Shirobokov, A. Ustyuzhanin, A. Gunes Badyin et al., "Differentiating the Black-Box: Optimization with Local Generative Surrogates", arXiv:2002.04632v1 [cs.LG] (2020).
- K. Cranmer, J. Brehmer, and G. Louppe, "The frontier of simulation-based inference", arXiv:1911.01429[stat.ML] (2019), Proceedings of the National Academy of Sciences.
- F. Ratnikov, "Using machine learning to speed up and improve calorimeter R&D", JINST 15 (2020) C05032, doi: 10.1088/1748-0221/15/05/C05032.
- F. Ratnikov, D. Derkach, A. Boldyrev, A. Shevelev, P. Fakanov, L. Matyushin, "Using machine learning to speed up new and upgrade detector studies: a calorimeter case", to appear in proceedings of CHEP 2019, https://arxiv.org/abs/2003.05118
- A. Boldyrev, D. Derkach, F. Ratnikov, A. Shevelev, "ML-assisted versatile approach to Calorimeter R&D", arXiv:2005.07700
- P. Giubilato et al., "iMPACT: innovative pCT scanner", IEEE Nucl. Science Symposium and Medical Imaging Conference (NSS/MIC) IEEE (2015), https://ieeexplore.ieee.org/abstract/document/7581240.
- S. Wuyckens, A. Giammanco, P. Demin, and E. Cortina Gil, "A Portable muon telescope based on small and gas-tight Resistive Plate Chambers"<, Phil. Trans. Royal Soc. A377 (2019) 2137, arXiv:1806.06602v2[physics.ins-det] (2018), doi:10.1098/rsta.2018.0139.
- J. Kieseler, "Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph and image data", arXiv:2002.03605[physics.data-an] (2020).
- P. de Castro Manzano and T. Dorigo, "INFERNO: Inference-Aware Neural Optimization", Comp. Phys. Commun. 244 (2019) 170; Arxiv:1806.04743v2 [stat.ml] (2018), doi:10.1016/j.cpc.2019.06.007 .
- J. Brehmer, K. Cranmer et al., "MadMiner: Machine learning-based inference for particle physics", Comput. Softw. Big Sci. 4 (2020) 1, 3, doi:10.1007/s41781-020-0035-2.
- G. Louppe, J. Hermans, and K. Cranmer, "Adversarial Variational Optimization of Non-Differentiable Simulators", PMLR 89:1438-1447, 2019, arXiv:1707.07113[stat.ML].
- K. Cranmer, J. Pavez, and G. Louppe, "Approximating Likelihood Ratios with Calibrated Discriminative Classifiers", arXiv:1506.02169[stat.ML] (2015).